Synaptic-like Microvesicles of Neuroendocrine Cells Originate from a Novel Compartment That Is Continuous with the Plasma Membrane and Devoid of Transferrin Receptor
نویسندگان
چکیده
We have characterized the compartment from which synaptic-like microvesicles (SLMVs), the neuroendocrine counterpart of neuronal synaptic vesicles, originate. For this purpose we have exploited the previous observation that newly synthesized synaptophysin, a membrane marker of synaptic vesicles and SLMVs, is delivered to the latter organelles via the plasma membrane and an internal compartment. Specifically, synaptophysin was labeled by cell surface biotinylation of unstimulated PC12 cells at 18 degrees C, a condition which blocked the appearance of biotinylated synaptophysin in SLMVs and in which there appeared to be no significant exocytosis of SLMVs. The majority of synaptophysin labeled at 18 degrees C with the membrane-impermeant, cleavable sulfo-NHS-SS-biotin was still accessible to extracellularly added MesNa, a 150-D membrane-impermeant thiol-reducing agent, but not to the 68,000-D protein avidin. The SLMVs generated upon reversal of the temperature to 37 degrees C originated exclusively from the membranes containing the MesNa-accessible rather than the MesNa-protected population of synaptophysin molecules. Biogenesis of SLMVs from MesNa-accessible membranes was also observed after a short (2 min) biotinylation of synaptophysin at 37 degrees C followed by chase. In contrast to synaptophysin, transferrin receptor biotinylated at 18 degrees or 37 degrees C became rapidly inaccessible to MesNa. Immunofluorescence and immunogold electron microscopy of PC12 cells revealed, in addition to the previously described perinuclear endosome in which synaptophysin and transferrin receptor are colocalized, a sub-plasmalemmal tubulocisternal membrane system distinct from caveolin-positive caveolae that contained synaptophysin but little, if any, transferrin receptor. The latter synaptophysin was selectively visualized upon digitonin permeabilization and quantitatively extracted, despite paraformaldehyde fixation, by Triton X-100. Synaptophysin biotinylated at 18 degrees C was present in these subplasmalemmal membranes. We conclude that SLMVs originate from a novel compartment that is connected to the plasma membrane via a narrow membrane continuity and lacks transferrin receptor.
منابع مشابه
Cellubrevin and synaptobrevins: similar subcellular localization and biochemical properties in PC12 cells
There is strong evidence to indicate that proteins of the synaptobrevin family play a key role in exocytosis. Synaptobrevin 1 and 2 are expressed at high concentration in brain where they are localized on synaptic vesicles. Cellubrevin, a very similar protein, has a widespread tissue distribution and in fibroblasts is localized on endosome-derived, transferin receptor-positive vesicles. Since b...
متن کاملSorting to synaptic-like microvesicles from early and late endosomes requires overlapping but not identical targeting signals.
In PC12 neuroendocrine cells, synaptic-like microvesicles (SLMV) are thought to be formed by two pathways. One pathway sorts the proteins to SLMV directly from the plasma membrane (or a specialized domain thereof) in an adaptor protein complex 2-dependent, brefeldin A (BFA)-insensitive manner. Another pathway operates via an endosomal intermediate, involves adaptor protein complex 3, and is BFA...
متن کاملColocalization of synaptophysin with transferrin receptors: implications for synaptic vesicle biogenesis
We have reported previously that the synaptic vesicle (SV) protein synaptophysin, when expressed in fibroblastic CHO cells, accumulates in a population of recycling microvesicles. Based on preliminary immunofluorescence observations, we had suggested that synaptophysin is targeted to the preexisting population of microvesicles that recycle transferrin (Johnston, P. A., P. L. Cameron, H. Stukenb...
متن کاملSecretagogue-triggered transfer of membrane proteins from neuroendocrine secretory granules to synaptic-like microvesicles.
The membrane proteins of all regulated secretory organelles (RSOs) recycle after exocytosis. However, the recycling of those membrane proteins that are targeted to both dense core granules (DCGs) and synaptic-like microvesicles (SLMVs) has not been addressed. Since neuroendocrine cells contain both RSOs, and the recycling routes that lead to either organelle overlap, transfer between the two po...
متن کاملArabidopsis leaf plasma membrane proteome using a gel free method: Focus on receptor–like kinases
The hydrophobic proteins of plant plasma membrane still remain largely unknown. For example in the Arabidopsis genome, receptor-like kinases (RLKs) are plasma membrane proteins, functioning as the primary receptors in the signaling of stress conditions, hormones and the presence of pathogens form a diverse family of over 610 genes. A limited number of these proteins have appeard in pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 137 شماره
صفحات -
تاریخ انتشار 1997